A few MIG welding machines handbook: how to become a more skilled welder and how to select the top welding equipment. For the best control of your weld bead, keep the wire directed at the leading edge of the weld pool. When welding out of position (vertical, horizontal or overhead welding), keep the weld pool small for best weld bead control, and use the smallest wire diameter size you can. A bead that is too tall and skinny indicates a lack of heat into the weld joint or too fast of travel speed. Conversely, if the bead is flat and wide, the weld parameters are too hot or you are welding too slowly. Ideally, the weld should have a slight crown that just touches the metal around it. Keep in mind that a push technique preheats the metal, which means this is best used with thinner metals like aluminum. On the other hand, if you pull solid wire, it flattens the weld out and puts a lot of heat into the metal. Finally, always store and handle your filler metals properly. Keep product in a dry, clean place — moisture can damage wire and lead to costly weld defects, such as hydrogen-induced cracking. Also, always use gloves when handling wires to prevent moisture or dirt from your hands settling on the surface. When not in use, protect spools of wire by covering them on the wire feeder, or better yet, remove the spool and place it in a clean plastic bag, closing it securely.
Look for ways to create more efficiencies in the welding process. This includes examining such things as wire diameter, wire feed speed, voltage, travel speed, gas type, transfer mode, etc. For instance, if the shop is currently welding with a short arc process and a 75/25 blend of shielding gas, it may be more effective to switch to a different gas and a spray mode of transfer. Or, a change in process may be warranted based on the condition of the part. If there is oxide on the part, it may be easier to change to a process that will overcome contamination problems rather than try to clean each part before welding. Your welding supplier should be up to date on the latest technology and be able to advise you on new processes, machinery and consumables that can optimize welding at the shop. In some cases, it may be better to double bevel a joint to prepare it for welding rather than single bevel it. It is recommended to double bevel any material that is more than 3/4″ in thickness. Just this simple change in procedure can save quite a bit in weld metal. On a 3/4″ thick piece, a double bevel will use 1.45 lbs. per foot of weld metal while a single bevel will use 1.95 lbs. per foot.
A few advices about welding equipment, MIG and TIG welders, plasma cutters. Identify the types of welding projects and materials you will weld most of the time. Are you creating metal sculptures? Do you intend to restore an old muscle car in your garage? Does the motorcycle you bought years ago require some fabrication? Maybe you need to do basic repair on farm equipment. Taking the time up front to identify the projects that will occupy the biggest percentage of your welding activity will help you determine the specific thickness of metal you will likely weld most often – and ultimately help you select the most suitable welder. Time to get a bit more specific. Let’s take a look at what welding process you can use for each metal type. Keep in mind that many of these materials are also processed using varying combinations of two or more metals to reinforce strength and functionality.
Flat-Position Welding Increases Welding Speed : It’s common knowledge that welding in a horizontal position will be the easiest and fastest way to weld. A flat position is not as taxing to maintain and the welding puddle will stay in place. Take some time to evaluate each project before beginning in order to make sure the majority of welds can be completed in this position. If a job calls for vertical welding, see this article about vertical welding. Core Wire Feeder Increases TIG Welding Speed: For professional welders hoping to speed up TIG welding, a core wire feeder will add filler metal through an automated process. Watch this video on how it works. This enables welders to work with both hands and to maintain a constant flow of wire into the welding puddle. Ed Craig at the Frabricator writes about the wire feeder process first developed in Europe, saying it is “suitable for all-position welding on materials of any thickness, the process addresses traditional GTAW limitations and can enhance both manual and automated TIG weld quality and productivity.” Read additional details on https://www.weldingsuppliesdirect.co.uk/welding-equipment/mig-welders.html.
TIG welding filler wire and Mig welding wire from a spool are essentially the same composition except that mig welding wire often contains more silicon and that can actually be a good thing for TIG welding steel. Don’t hesitate to use steel or stainless steel mig wire if you run out of TIG welding filler metal. If its too small, double it up and twist it up in a cordless drill. Standard Tig wire for welding mild steel is E70S2 It seems like the standard mig welding wire off the shelf these days is almost always E70S6. The 2 and the 6 indicate the addition of silicon and deoxidizers in the wire. Stainless tig and mig wire is most often E308L unless you ask for something else.