High quality flow meter device supplier factory: Continuous measurement: continuous measurement of the liquid level changes, can realize the continuous measurement of the instrument has a level meter or level transmitter; level measurement: detect whether the liquid level reaches the upper limit, lower limit and so on a particular position is called level measurement, can realize the level measurement of the instrument has a level switch. In water treatment, the use of liquid level of the upper, middle and lower level to control the lifting pump on or off and level alarm. The development of science and technology to today, has produced countless kinds of liquid level measurement methods, from the ancient scale, the development of modern ultrasonic, radar measuring instrument. Liquid level measurement technology has also experienced a qualitative leap, the measurement of liquid level instrumentation is also a lot, do you know what are there? See extra details at flow instrumentation.
What are the characteristics of radar water level meter? All measuring components are designed in an integrated manner, and there is no mechanical wear during measurement. Because the measurement is a non-contact measurement, it is not affected by the physical properties such as the density and concentration of the water body, it is not easy to be washed away by floods, has a long service life and is easy to maintain. The advantages of the radar level transmitter are obvious. The editor warmly reminds that to choose the right one, it is still necessary to meet your own situation.
Any appreciable gain in boiler feedwater achieved through the process reduces the amount of energy (fuel) required at the boiler— in fact, every 10.8°F (6°C) rise in boiler feedwater amounts to a one percent savings in fuel cost. Inadequate level controls can inhibit the deaeration process (level too high) or reduce/shutdown feedwater flow to the boiler (level too low). The former affects hardware longevity and efficiency, while the latter risks production losses and possible damage to pumps.
Advanced Radar Level Measurement: The constant progress of innovation continues to push the limits of radar level measurement, propelling this technology into areas of capability and pertinence. As industries undergo transformations and integrate the Industrial Internet of Things (IIoT) into their operational processes radar devices have evolved to meet these changing demands. Integration with IIoT- Leading the Way to Industry 4.0 One of the transformative developments in radar level measurement is the seamless integration of Industrial Internet of Things (IIoT) capabilities into radar devices. These radar sensors equipped with IIoT features have become important components in Industry 4.0 initiatives ushering in an era where data driven excellence prevails in operations.
With emphasis placed on customer satisfaction, innovation, product development and overall business transformation, the company continued to innovate and expand with each passing year. KAIDI has successfully achieved global recognition, obtaining the leading position as Asia’s top process automation sensor manufacturer. In the past 5 years, the company has undergone tremendous growth and development – flourishing internationally and providing customers worldwide with the best customized solutions for process automation. See more information on https://www.kaidi86.com/. The Magnetic Level Gauge all use vacuum tube technology, with a lifespan of 3-5 years, and protection grade is up to IP68, not easy to fade.
The radar level gauge works by electromagnetic waves. Its working principle is to measure the specific liquid level by transmitting electromagnetic waves to the measured target. After the electromagnetic waves are emitted, they are reflected by the medium. For the radar level gauge, its key function is to ensure that it can transmit magnetrol guided wave radar signals smoothly. In our industrial production site, interference often occurs, so which interference sources will affect the measurement of the radar level gauge? let’s see.
Rod antenna: generally used in strong corrosive environments, with weak anti-interference ability and small range; Flare antenna: stronger anti-interference ability, suitable for more complex environments. The larger the bell mouth, the more concentrated the energy, and the larger the measuring range; Parabolic antenna: the focusing effect is stronger than that of the bell mouth, the anti-interference ability is the strongest, and the range is the largest.
Secondly, in cement production, material level measurement encountered another difficulty is strong dust interference, especially pneumatic conveying powder silo, dust flying when feeding, low visibility, laser level meter and high energy ultrasonic level meter can not be measured, although radar level meter at this time can receive part of the surface echo. But the echo signal was also weakened. In addition, due to the uneven surface of the radar echo is refracted, will also lead to the existence of radar echo; In addition, there are some conditions from the bottom to the bin inflation, so that the material surface loose, material level measurement is more difficult.
For the ultrasonic instrument that continuously measures the liquid level, when the temperature of the liquid to be measured changes greatly, the change of the propagation speed of the sound wave should be compensated. The connecting cable between the detector and the converter should take anti-electromagnetic interference measures. The structure of the ultrasonic level sensor should be determined according to the process requirements and on-site working conditions.
There is AC interference and the voltage is high. For example, for the radar level meter used in the production line, the power supply requirement is 24VDC (typical value), but in the on-site measurement, it is found that the power supply is displayed as 27.2V, which is significantly higher than 24VDC, resulting in a large measurement result and even a radar level meter. crash phenomenon. The installation position of the radar level meter is incorrect, which leads to deviations in the measurement. For example, the accumulation of aggregates in the transfer bin is a “mountain”-shaped cone, but only one radar level meter is installed near the discharge port of the return belt. , the installation position is too close to the discharge opening of the return belt, and at the same time, it is too far from the discharge opening of the feeding belt on both sides. Just below the radar level meter is the drop point of the return belt. If the distance is too close, the aggregate in the falling process will interfere with the radar level meter and form false reflections.