High quality Radar level sensor factory: The second case is that, in order to ensure the fluidity of crude oil, offshore oil platforms usually use hot medium oil heating pipes to heat the crude oil to ensure that it is stored within a certain temperature range. As the crude oil in the lower tank contains a small amount of water, some of the bottom water will precipitate out of the bilge water after standing, and the water vapor will evaporate during the continuous heating process. The water vapor condenses on the antenna at the top of the tank to form water droplets, causing a strong false signal at the top. Therefore, false signals are suppressed within 0~0.25m and the suppression line is set to 120dB to avoid false signals caused by water vapor condensation and level jumps at the top. In response to this situation, after on-site analysis and research tests decided to do a good job of pre-dewatering treatment, the water content of the crude oil in the lower tank is controlled at less than 0.5%, the heating temperature of the crude oil tank is controlled so that the crude oil in the tank is lower than 65 ℃, and the instrumentation is covered with thermal insulation materials on the outside, etc. Through the above measures, the phenomenon of level jumping caused by the formation of condensation at the antenna of the radar liquid level meter is eliminated. Find extra info on radar type level transmitter.
Temperature Compensation- Precision in Any Environment Another advancement in guided radar level measurement technology is the incorporation of mechanisms that compensate for temperature variations. Temperature fluctuations in microwave module circuits can lead to inaccuracies in measuring levels. To tackle this challenge, radar level measurement systems have implemented creative solutions. A crucial aspect of these advancements involves allocating a portion of the radar transmission pulse as a reference pulse. This reference pulse serves as a benchmark for comparing measurements enabling temperature calibration. When temperature changes occur the radar sensor can adjust its measurements accordingly ensuring that environmental conditions have no impact on accuracy. This temperature compensation feature is particularly valuable in applications where significant temperature shifts are common. Industries dealing with temperatures or processes prone to variations, such as petrochemical or food manufacturing sectors, rely on precise measurements. Radar sensors equipped with temperature compensation mechanisms rise to the occasion by delivering reliable results despite changing conditions.
Rod antenna: generally used in strong corrosive environments, with weak anti-interference ability and small range; Flare antenna: stronger anti-interference ability, suitable for more complex environments. The larger the bell mouth, the more concentrated the energy, and the larger the measuring range; Parabolic antenna: the focusing effect is stronger than that of the bell mouth, the anti-interference ability is the strongest, and the range is the largest.
The key components are made of high-quality materials, which have strong corrosion resistance and can adapt to highly corrosive environments. Low power consumption, can use solar power to supply power, no need to build water level wells, adapt to various geographical environments, no impact on water flow, and more convenient installation and maintenance. The parameter setting is convenient, and the false echo from the liquid surface to the antenna can be automatically identified by the software carried by itself to eliminate the interference.
An important part of steam generation is the quality of the steam generated. Maintaining water quality in the boiler within design parameters ensures the highest quality steam possible while minimizing blowdown of the boiler, both of which improve energy and resource management. Continuous or manual blowdown of the boiler minimizes scale accumulation and corrosion resulting from impurities in the water. The blowdown provides a means of accommodating liquid and impurities from the boiler, with the latter facilitating energy recovery through the use of flash steam.
Secondly, in cement production, material level measurement encountered another difficulty is strong dust interference, especially pneumatic conveying powder silo, dust flying when feeding, low visibility, laser level meter and high energy ultrasonic level meter can not be measured, although radar level meter at this time can receive part of the surface echo. But the echo signal was also weakened. In addition, due to the uneven surface of the radar echo is refracted, will also lead to the existence of radar echo; In addition, there are some conditions from the bottom to the bin inflation, so that the material surface loose, material level measurement is more difficult.
As one of the most professional magnetic level indicators manufacturers in China,Guangdong Kaidi Energy Technology Co., Ltd. provides customized solutions for a range of industrial automation process applications,such as mechanical float level indicator.We specialized in radar level gauge, fork type level switch,etc. These were implemented successfully, and KAIDI magnetic level gauge manufacturers products,such as radar level meter, magnetic level indicators, can be used in many different industries such as food & beverage, water, energy, pharmaceutical etc. See more details at kaidi86.com. Our Radar Level Meter has a range of up to 150 meters, frequency up to 120GHz and an accuracy of ±1mm, which can cope with various complex measurement conditions.
The radar level gauge works by electromagnetic waves. Its working principle is to measure the specific liquid level by transmitting electromagnetic waves to the measured target. After the electromagnetic waves are emitted, they are reflected by the medium. For the radar level gauge, its key function is to ensure that it can transmit magnetrol guided wave radar signals smoothly. In our industrial production site, interference often occurs, so which interference sources will affect the measurement of the radar level gauge? let’s see.
Working principle: Working principle of radar level gauge: UHF electromagnetic waves are transmitted to the liquid level of the container under test through the cable or antenna. When the electromagnetic wave touches the liquid level and is reflected back, the instrument detects the time difference between the initial wave and the echo, thereby calculating the liquid level height. Select guided wave radar or airborne radar according to the dielectric constant and measurement length of the measured medium.
Product features: Large display range, wide range of use, suitable for low temperature, medium temperature, high pressure occasions. It can be matched with remote transmitter output 4-20MADC standard signal to realize remote display of liquid level guage. It can also be matched with liquid level switch to realize liquid level control. Generally speaking, the material level feedback is inaccurate and untimely, which is very prone to explosion events, and there is a greater safety risk. Therefore, the requirements for the radar level meter are very high, but the radar level meter often has abnormal material level jumps or falls, or even crashes, resulting in large errors in material level measurement, which brings trouble to production and sales.