Oxford Mig welders plus welding guides: Identify the types of welding projects and materials you will weld most of the time. Are you creating metal sculptures? Do you intend to restore an old muscle car in your garage? Does the motorcycle you bought years ago require some fabrication? Maybe you need to do basic repair on farm equipment. Taking the time up front to identify the projects that will occupy the biggest percentage of your welding activity will help you determine the specific thickness of metal you will likely weld most often — and ultimately help you select the most suitable welder. Time to get a bit more specific. Let’s take a look at what welding process you can use for each metal type. Keep in mind that many of these materials are also processed using varying combinations of two or more metals to reinforce strength and functionality.
The development of inverter based machines over the last 25 years has had the largest impact in the TIG, PLASMA & STICK (ARC) machine market. Inverters solve the issues of the older type machines, performance is superior, power consumption is low & size & weight very low. However virtually everyone in the industry knows reliability & lifespan can be poor, even the best German made inverters often go bang! This means there is still a demand for the older transformer type machines, particuarly for low usage applications where power consumption is not an issue or for use in damp & dirty workshops where reliability is number one concern. However, OXFORD WELDERS now have a much better solution & no compromise! Explore a few extra info on Oxford Plasma Cutters.
The arc is shaped like a cone, with the tip at the electrode and the base on the metal being welded. The closer the electrode is held to the metal, the smaller the base of the cone – but as you pull the electrode farther away, the base (and puddle) gets larger. If the puddle gets too large, gravity will simply pull it away from the base metal, leaving a hole. This is why thin-gauge metals are especially challenging for beginners. Perhaps the most important skill needed for TIG welding is moving the torch in a controlled manner, with steady forward movement, while keeping the gap between the tip of the electrode and the base metal consistently small – usually in the range of 1/8 inch to 3/16 inch. It requires a lot of practice to precisely control the arc length, keeping it as short as you can without allowing the electrode to touch the base metal or filler rod.
One of the “cardinal sins” that almost every shop commits is over-welding. This means that if the drawing calls for a 1/4″ fillet weld, most shops will put down a 5/16″ weld. The reasons? Either they don’t have a fillet gauge and are not exactly sure of the size of the weld they are producing or they put in some extra to “cover” themselves and make sure there is enough weld metal in place. But, over-welding leads to tremendous consumable waste. Let’s look again at our example. For a 1/4″ fillet weld, the typical operator will use .129 lbs. per foot of weld metal. The 5/16″ weld requires .201 lbs. per foot of weld metal – a 56 percent increase in weld volume compared to what is really needed. Plus, you must take into account the additional labor necessary to put down a larger weld. Not only is the company paying for extra, wasted consumable material, a weld with more weld metal is more likely to have warpage and distortion because of the added heat input. It is recommended that every operator be given a fillet gauge to accurately produce the weld specified – and nothing more. In addition, changes in wire diameter may be used to eliminate over-welding. Read a few extra info at weldingsuppliesdirect.co.uk.